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Abstract
Time-dependent supersymmetry allows one to delete quasienergy levels for
time-periodic Hamiltonians and to create new ones. We illustrate this by
examining an exactly solvable model related to the simple harmonic oscillator
with a time-varying frequency. For a nonharmonic example we present the
change of the geometric phase due to a supersymmetry transformation.

PACS number: 03.65.Ge

One may say without exaggeration that non-relativistic quantum mechanics is essential to
understanding the basic laws of nature. Thus, the Schrödinger equation is one of the most
fundamental constructs of modern natural science and over the past century, as evidenced
by a vast literature, great progress has been made in developing various consequences of the
time-independent Schrödinger equation describing stationary processes. In the real world,
however, nearly everything changes with time, and stationary processes are exceptional
(perhaps even impossible), but there is ample evidence for believing that there will soon
be similar advances in the study of non-stationary processes and the consequences of the time-
dependent Schrödinger equation. The end of the last century saw some progress in this area:
an extensive investigation into the properties of time-periodic Hamiltonians, their dynamical
invariants [1] and symmetries [2], dynamical pulsed coherent states [3], Floquet quanta [4]
and application in optics [5]. An area that has been attracting interest recently is calculating
the various classes of geometric phases [6] (for example Berry’s adiabatic phase [7] and its
generalization, the Aharonov–Anandan phase [8]) for time-dependent Hamiltonians, although
so far there is a shortage of exact calculations for realistic physical models, i.e. away from the
adiabatic limit (in this respect, see [9]). Indeed, the system treated in most detail is the exactly
solvable harmonic oscillator with time-dependent mass and/or frequency [10].

It has long been known how to construct new exactly solvable time-independent
Hamiltonians from an initial one by means of the Darboux, or supersymmetry, transformation
3 On leave from: Physics Department of Tomsk State University, 634050 Tomsk, Russia.
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(see e.g. [11, 12]), and the procedure has recently been generalized to include time dependence
[12, 13]. Although stationary state energies do not exist for a time-dependent Hamiltonian,
if the time dependence is periodic, quasienergies play a similar role [14, 15]. In this letter,
based on the simple harmonic oscillator model, having a time-periodic frequency, we show
that this analogy is much deeper than previously recognized and that it can be extended to
the level of supersymmetry. In particular, we show that processes such as the creation and
annihilation of quasienergies may be effected easily by time-dependent supersymmetry (or
Darboux) transformations.

Since exact eigenstates are known for these new time-dependent Hamiltonians, their
remarkable properties, such as the geometric phases, can be investigated in detail. We
demonstrate here that the Aharonov–Anandan geometric phase, for systems generated from
our model harmonic oscillator Hamiltonian, simply acquires an additive correction under a
Darboux transformation. As is well known, the Aharonov–Anandan geometric phase appears
as the holonomy in the projective state space (the structure involved here is a Hilbert bundle
with base the projective state space and fibre U(1)), and it is related to the exact (nonadiabatic)
evolution of any cyclic state (a closed path in the projective Hilbert space) in a time-dependent
Hamiltonian.

We begin with the Schrödinger equation for the following one-dimensional time-
dependent Hamiltonian

h0 = −∂2
x + ω2(t)x2 ω(t + T ) = ω(t) (1)

where ∂x ≡ ∂/∂x and appropriate units have been chosen. A complete set of solutions
normalized to unity on the real line is [16]

ψn(x, t) = (ε̄(t)/ε(t))n/2+1/4 exp(iγ̇ (t)z2(x, t))fn(x, t) (2)

where

fn(x, t) = Nn

[γ (t)]1/4
Hn(z) e−z2/2 z(x, t) = x/

√
8γ (t). (3)

Here Nn = (2n+1n!
√

2π)−1/2, γ (t) = ε(t)ε̄(t),Hn(z) is a Hermite polynomial and ε(t), ε̄(t)

are two linearly independent solutions of the classical equation of motion for the harmonic
oscillator

ε̈(t) + 4ω2(t)ε(t) = 0. (4)

A dot over a symbol represents the derivative with respect to time and we choose these solutions
so that their Wronskian ε̇(t)ε̄(t) − ε(t) ˙̄ε(t) = i

2 . In general, the solutions of (4) are of three
types: (i) both ε(t) and ε̄(t) are stable, (ii) they are both unstable, (iii) one is stable, the other
is unstable. It is known [15] that only in the first case do the functions (2) have the property

ψn(x, t + T ) = e−iEnT ψn(x, t) (5)

where En = (
n + 1

2

)
δ is called the quasienergy [14] and δ is defined by the equation

ε(t + T ) = ε(t) eiδT . (6)

According to Floquet’s theorem a (complex) solution ε(t) to equation (4) satisfying (6) can
always be found in case (i). We choose the complex conjugate of ε(t) to be the second,
linearly independent, solution to (4). Here and below a bar over a quantity denotes its complex
conjugate and we note that γ (t) is real. It is clear from (5) that quasienergies En are defined
modulo 2π and if they are commensurable with 2π

T
, the functions ψn are periodic.

A further useful property of the functions (2) is that there exist ladder operators

a = ε(t)∂x − iε̇(t)x/2 a+ = −ε̄(t)∂x + i ˙̄ε(t)x/2 (7)
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such that aψn =
√

n

2 ψn−1, a
+ψn =

√
n+1
2 ψn+1. It follows from here that they are eigenstates of

the symmetry operator G = (aa+ + a+a)/2,Gψn = 1
8 (2n + 1)ψn.

Below we shall apply the approach presented in [13] for constructing new exactly
solvable time-dependent Hamiltonians having the same quasienergy spectrum, with the
possible exception of a few levels, as a given one. The procedure is simply the time-
dependent generalization of the usual supersymmetry construction [11]. A new Hamiltonian
h1 is defined by means of a nodeless solution u(x, t), called the transformation function, to
the initial Schrödinger equation, i∂tu(x, t) = h0u(x, t), subject to the additional condition
∂3
x (ln u/ū) = 0, which guarantees that h1 has the form

h1 = h0 − ∂2
x ln|u(x, t)|2 (8)

the potential being a real function. Solutions of the corresponding Schrödinger equation are
obtained by applying the differential operator

L = L1(t)[−∂x + (∂x ln u(x, t))] (9)

to ψn:

ϕn(x, t) = M−1/2
n Lψn(x, t) (10)

where the time-independent factor M
−1/2
n guarantees that the functions (10) are normalized to

unity. The operator L is defined in terms of the same function u(x, t) as in (8) and the function

L1(t) = exp

[
2
∫

Im
(
∂2
x ln u

)
dt

]
(11)

which depends only on t [13]. The operator

L+ = L1[∂x + (∂x ln ū(x, t))] (12)

adjoint to L, realizes the transformation in the opposite direction, from solutions of
the Schrödinger equation with Hamiltonian h1 to those of the Hamiltonian h0. Thus, the
superposition L+L is a symmetry operator for the initial Schrödinger equation and the function
u(x, t) is an eigenfunction of this operator. The normalization factor in (10) is equal to its
mean value Mn = 〈ψn|L+L|ψn〉.

Among the functions (2), only ψ0 is nodeless and suitable for using as a transformation
function; it produces only a shift of the Hamiltonian by an x-independent value. This is a
manifestation of the well-known shape-invariance property [11] in the time-dependent case.
Any other function uk(x, t) = ψk(x, t), k > 0 taken as the transformation function will
produce a potential with k poles corresponding to the zeros of ψk(x, t), which clearly has no
physical meaning if the variable x runs over the whole real line. Nevertheless, the transformed
Hamiltonian h1 can be taken as the initial one for the next transformation step and if this is
realized with the transformation function ũk+1(x, t) = Luk+1(x, t), all the poles are removed
and the resulting Hamiltonian h

(k)
2 = h0 −A

(k)
2 (x, t) is physically admissible. For the potential

difference one gets

A
(k)
2 (x, t) = 1

4γ (t)

[
S ′′

k(z)

Sk(z)
−

(S ′
k(z)

Sk(z)

)2

− 2

]
. (13)

Here Sk(z) = ∑k
j=0(k!/2j j !)H 2

j (z) and for the first three of these functions one has the simple

expressions: S0(z) = 1,S1(z) = 2z2 + 1,S2(z) = 4z4 + 3. The Hamiltonian h
(k)
2 has the same

system of quasienergies as h0 except for those corresponding to n = k and n = k + 1 which
are now deleted. We can repeat this process without any restrictions and get a Hamiltonian
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Figure 1. Potentials V
(2)
2 (x, t) at t = 0 (curve 2a) and at t = T/2 (curve 2b) together with the

harmonic oscillator potential (curves 1a and 1b, respectively).

having an initial quasienergy spectrum with any number of lacunae composed of two adjacent
levels. The potential

V
(k)

2 (x, t) = ω2(t)x2 − A
(k)
2 (x, t) (14)

looks like a harmonic oscillator potential, at the bottom of which there are k additional minima.
The behaviour of the k = 2 case, which is typical, is sketched in figure 1 together with the
harmonic oscillator potential.

The opposite process, the creation of new quasienergy levels, is also possible. For this
purpose we need unphysical solutions of the initial Schrödinger equation, which do not belong
to the Hilbert space and have growing asymptotic behaviour as |x| → ∞ any fixed time
moment. It is not difficult to see that the functions

uk(x, t) = γ −1/4(t)(ε(t)/ε̄(t))k/2+1/4Hk(iz) exp((iγ̇ (t) + 1/2)z2) (15)

have this property. For any even value k = 2	 these are nodeless and suitable for using as
transformation functions. They produce the new Hamiltonians

h
(2	)
1 = −∂2

x + V
(2	)

1 (x, t) 	 = 0, 1, . . . (16)

with potentials

V
(2	)

1 (x, t) = ω2(t)x2 − A
(2	)
1 (x, t) (17)

where

A
(2	)
1 (x, t) = 1

4γ (t)

[
1 + 4	(2	 − 1)

q2	−2(z)

q2	(z)
− 8	2

(
q2	−1(z)

q2	(z)

)2
]

(18)

and qk(z) = (−i)k2−k/2Hk(iz). Using the recursion relation for Hermite polynomials one finds
q0(z) = 1, q1(z) = √

2z, qk+1(z) = √
2zqk(z) + kqk−1(z). The fact that a new quasienergy

level is created by this process follows from the property that the function vk = 1/(L1(t)ūk),
where L1 = √

γ (t), is a square integrable solution of the transformed Schrödinger equation.
It is easy to see that it corresponds to the quasienergy E = −δ

(
k + 1

2

)
, which, in general,

is different from all the other quasienergies En = δ
(
n + 1

2

)
, n = 0, 1, . . . . The case k = 0

reproduces the harmonic oscillator Hamiltonian shifted by an x-independent quantity. The
first nontrivial case corresponds to k = 2. We display a typical potential, V

(2)
1 (x, t), in

figure 2.
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Figure 2. Potential V
(2)
1 (x, t) at t = 0 (curve 2a) and at t = T/2 (curve 2b) together with the

harmonic oscillator potential (curves 1a and 1b, respectively).

After applying the operator (9) to the functions (2) one gets solutions (10) of the
transformed equation corresponding to the quasienergies En. For the case k = 2 they can
easily be expressed in terms of ψn(x, t):

ϕn(x, t) = 1√
n + 3

[√
n + 1

√
ε(t)

ε̄(t)
ψn+1(x, t) +

√
2zψn(x, t)

z2 + 1/2

]
. (19)

The normalization factor here is calculated by noting that the symmetry operator L+L is simply
the shifted G operator, L+L = G + 5/8.

We now turn to the transformation of the Aharonov–Anandan phase and consider for
simplicity the first nontrivial case k = 2. In these calculations we are using the standard
approach (see e.g. [8]). The global phase change φn of a cyclic solution of the Schrödinger
equation during time T is obtained directly from (2) for the harmonic oscillator potential (and
from (19) for transformed potentials). The dynamical part of this global phase is given in
terms of the mean energy value

∫ T

0 〈ψn|iψ̇n〉 dt (or
∫ T

0 〈ϕn|iϕ̇n〉 dt). The Aharonov–Anandan
phase β0

n for the functions in (2) is obtained from the overall phase change by adding the
dynamical component

β0
n = φn +

∫ T

0
〈ψn|iψ̇n〉 dt. (20)

After some algebra we get the following results:

φn = −
(

n +
1

2

)
δT (21)

〈ψn|iψ̇n〉 = i

4
(2n + 1)

d

dt
ln(ε̄(t)/ε(t) − 1

8
〈ψn|x2|ψn〉 d2

dt2
ln γ (t) (22)

where the mean value of the square coordinate is 〈ψn|x2|ψn〉 = 4(2n + 1)γ (t).
The structure of the functions ϕn(x, t) is similar to those in (2) and therefore the average

energy is given by (22) with the replacement ψn → ϕn. To calculate the mean value of the
square coordinate for the functions (19) we use the property L+L = G + 5/8 and the fact that
the functions (2) are eigenfunctions for G to get

〈ϕn|x2|ϕn〉 = 〈ψn|x2|ψn〉 +
4
√

γ (t)√
n + 3

〈ψn|x|ϕn〉.
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The first integral here is standard. For the second one we have found the following expression
〈ψn|x|ϕn〉 = 2

√
γ (t)/(n + 3)

[
n + 3 − In

(
1
2

)]
, where

In(a) = Tn(a)√
πn!2n

Tn(a) =
∫ ∞

−∞

H 2
n (x)

x2 + a
e−x2

dx.

For the latter integral we obtained the recursion relation

Tn(a) = −2Tn−1(a) + 4(n − 1)2Tn−2(a) − 4aT ′
n−1(a)

which follows directly from that for the Hermite polynomials. The initial values of this
function may be calculated in a straightforward way

T0(a) = π√
a

ea erfc
√

a and T1(a) = 4
√

π − 4aT0(a).

Therefore, the mean energy in the states (19) is given by

〈ϕn|iϕ̇n〉 = 〈ψn|iψ̇n〉 −
(

1 − In

(
1
2

)
n + 3

)
γ (t)

d2

dt2
ln γ (t). (23)

After being integrated over a period T the first term on the RHS of (22) gives us exactly
the overall phase change φn, both for the initial states and for the transformed ones (see (23));
the Aharonov–Anandan phase is determined only by the second term. Thus, the geometric
phases β0

n for all states ψn(x, t) are determined by the geometric phase for the ground state:

β0
n = (2n + 1)β0

0 β0
0 = −1

2

∫ T

0
γ (t)

d2

dt2
ln γ (t) dt.

For the transformed Aharonov–Anandan phase from (23) one gets

β1
n = β0

n + 2

[
1 − In

(
1
2

)
n + 3

]
β0

0 .

Hence, once the quantity β0
0 is known, we can easily calculate the Aharonov–Anandan phase

both for the harmonic oscillator and for the Hamiltonian h
(2)
1 .

As a numerical illustration we have chosen a model for which analytic solutions of
equation (4) are available:

ω(t) =
√

ω2
0 − 1

2℘(t + ωi). (24)

Here ω0 is a parameter of the model along with the real (ωr = T ) and imaginary (ωi)

periods of the Weierstrass ℘ function. If we eliminate the parameter ω0 in favour of
d given by ℘(d) = −4ω2

0, the solutions of equation (4) have the form [17] ε(t) =
(σ (t + ωi + d)/σ (t + ωi)) exp(−tζ(d)). Here σ and ζ are (non-elliptic) Weierstrass functions.
Figures 1 and 2 are plotted with ωr = −iωi = 2 and ω0

∼= 0.5978. We have also found the
value β0

0 = 0.0149.
We make a further comment concerning the time-dependent supersymmetry underlying

our approach. The transformation operators are related to eigenfunctions (not necessarily
‘physical’) of the symmetry operator G,Guk = gkuk (gk = 5/8 for our choice) which
accounts for the factorization L+L = G − gk . When the order of transformation operators
is interchanged, one gets a symmetry operator G̃ for the transformed Schrödinger equation,
LL+ = G̃ − gk . The operators G and G̃ are supersymmetric partners from which a matrix
operator G = diag(G, G̃) can be constructed. It acts in the space spanned by the basis vectors

�(1)
n =

(
ψn

0

)
�(2)

n =
(

0
ϕn

)
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where the functions ψn and ϕn are given in (2) and (19), respectively. So, just as in the usual
supersymmetric approach, one has a two-fold degenerate spectrum except for the ground-
state level which is non-degenerate. This means that we have constructed here a model with
unbroken supersymmetry. Finally we note that supercharge operators, closing a superalgebra,
can be constructed as usual with the help of the transformation operators L and L+.

In summary, in this letter we have constructed, in principle, an infinite number of time-
periodic Hamiltonians having almost unlimited complexity, for which the Aharonov–Anandan
phase can be determined explicitly, and have illustrated the procedure for a Hamiltonian whose
time dependence is given by the square root of an elliptic function. This extends greatly the
set of previously known cases. We feel that this opens the way for a systematic investigation
of the geometric phases for one-dimensional quantum systems exhibiting supersymmetric
properties.
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